Implications of rank one convexity

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of perspective functions in convexity, polyconvexity, rank-one convexity and separate convexity

Any finite, separately convex, positively homogeneous function on R is convex. This was first established in [1]. In this paper, we give a new and concise proof of this result, and we show that it fails in higher dimension. The key of the new proof is the notion of perspective of a convex function f , namely, the function (x, y) → yf(x/y), y > 0. In recent works [9, 10, 11], the perspective has...

متن کامل

Rank-one Convexity Implies Quasiconvexity on Diagonal Matrices

The question of whether such a result holds was raised inTartar’s seminal paper [T1], where he proved estimate (1.3) under the stronger condition that ∂2uj and ∂1vj are bounded in Lloc. In this case, he even showed that the Young measure generated by the pair (uj, vj) (see below for definitions) is a tensor product, and he gave an example that this need no longer be the case if only (1.2) holds...

متن کامل

Fuzzy implications satisfying convexity relations

It is an open question whether a non-trivial convex combination of triangular norms (resp. conorms) can be a triangular norm (resp. conorm). We investigate the analogous question for S-implications and R-implications.

متن کامل

Two-Path Convexity and Bipartite Tournaments of Small Rank

We study two-path convexity in bipartite tournaments. For a bipartite tournament, we obtain both a necessary condition and a sufficient condition on the adjacency matrix for its rank to be two. We then investigate 4-cycles in bipartite tournaments of small rank. We show that every vertex in a bipartite tournament of rank two lies on a four cycle, and bipartite tournaments with a maximum number ...

متن کامل

QTT-rank-one vectors with QTT-rank-one and full-rank Fourier images

Quantics tensor train (QTT), a new data-sparse format for one– and multi–dimensional vectors, is based on a bit representation of mode indices followed by a separation of variables. A radix-2 reccurence, that lays behind the famous FFT algorithm, can be efficiently applied to vectors in the QTT format. If input and all intermediate vectors of the FFT algorithm have moderate QTT ranks, the resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire

سال: 1988

ISSN: 0294-1449

DOI: 10.1016/s0294-1449(16)30351-1